By Dr. Francis Collins – February 6, 2018

It’s hard to believe, but it’s been almost 15 years since we successfully completed the Human Genome Project, ahead of schedule and under budget. I was proud to stand with my international colleagues in a celebration at the Library of Congress on April 14, 2003 (which happens to be my birthday), to announce that we had stitched together the very first reference sequence of the human genome at a total cost of about $400 million. As remarkable as that achievement was, it was just the beginning of our ongoing effort to understand the human genome, and to use that understanding to improve human health.

That first reference human genome was sequenced using automated machines that were the size of small phone booths.  Since then, breathtaking progress has been made in developing innovative technologies that have made DNA sequencing far easier, faster, and more affordable. Now, a report in Nature Biotechnology highlights the latest advance: the sequencing and assembly of a human genome using a pocket-sized device [1]. It was generated using several “nanopore” devices that can be purchased online with a “starter kit” for just $1,000. In fact, this new genome sequence—completed in a matter of weeks—includes some notoriously hard-to-sequence stretches of DNA, filling several key gaps in our original reference genome.

For most sequencing methods,  DNA must be broken into smaller, more manageable fragments. That means all of the nucleotide “letters”— the As, Cs, Gs, and Ts—in the DNA code must be pieced back together in their correct order like a complex puzzle. While many methods are incredibly accurate at reassembling many parts of the puzzle, it’s much trickier to do this in highly repetitive stretches of DNA. When broken up, they produce puzzle pieces that are essentially identical.


[ Read More ]